
Use of NetFlow/IPFIX Botnet Detection Tools to Determine Placement for

Autonomous VMs

Razvan-Ioan Dinita

About Me

• 7+ years of programming experience (PHP, JS, C/C++, Java, C#,

Bash, Scala)

• Open Source web development

• Web/Server Development focus

• Keen on ensuring app security

• PhD in Cloud Computing – expected early 2015

• Lecturer at ARU, Cambridge

• What?

• The Cloud

• Test Bed Overview

• A Software Approach – AMDS

• Botnets

• NetFlow/IPFIX Overview

• Botnet Detection Module

• Experimental Design and Results

• Conclusion

Outline

What?

• Autonomous software-based Botnet Detection

– The test bed cloud infrastructure

– Autonomous Management Distributed System

– Botnets and NetFlow/IPFIX

– Botnet Detection module design

– Experiment design

– Experimental results

– Conclusion

The Cloud

• Hype word

• Hosting Reloaded

• SaaS (G Apps), PaaS (App Engine), IaaS (AWS, Azure)

Test Bed Overview

• Hardware based in 4 different locations

• Fast 1Gbps (external) and 10Gbps (local) connections

• 7 servers (Dell R710), 3 Storage Area Networks, Back-up server,

Multiple Routers and Switches, Integrated Light-Out

A Software Approach - AMDS

• Autonomous Management Distributed System

• Modular design, highly extensible

• Makes use of Java vSphere APIs

• Highly scalable (load balance)

• Resides inside a Linux based VM

• Plugs directly into existing infrastructure

A Software Approach - AMDS

• Built using Scala

• Scala (Akka) vs Java

– Native thread management

– Built-in fault tolerance

– More with less

– Native support for Java

A Software Approach - AMDS

Botnet Detection

Botnets

NetFlow

• Internet Access Monitoring: Peering & Traffic

• IETF Standard for Data Sampling and Export

• Security DDOS Monitoring Tool

• Flow timers, timing of network traffic types

• Who, what, where, when in the network

IPFIX

• General data transport protocol

• Based on NetFlow version 9

• Flexible flow key (selection)

• Flexible flow export – TEMPLATE BASED

• Efficient data representation

Botnet Detection Module

• Bolted onto AMDS

– Access to Data Centre (DC) management

• Ability to instantly react to threats

– Lockdown DC

– Restrict access

– Relocate sensitive VMs to secure part of the DC

Get Network Flow

• Interfaces with the outside through AMDS Connection module

• Requests and Accepts NetFlow/IPFIX Flows

• Passes them on to storage and breakdown

Store Flow / Analysis Result

• Long term local storage

• Stores

– Raw Flows

– Flow Analysis Results

• Responds to statistics

 queries

Flow Breakdown

• Deals with raw Flow information

• Extracts key Flow components

• Looks for

– packet size, IP addresses and ports for both packet source and

destination, class of service, device interface, protocol type

• Passes results to analysis component

Flow Analysis

• Embodiment of heuristic detection algorithm

• Malicious behaviour detection through network traffic/Flow

analysis

• Compares current Flow to past Flows

• Flags inconclusive results for further comparisons

• Passes results to storage

Flow Analysis Algorithm

• Refines a client model from Flow data

• Considers

– packet size, IP addresses and ports, class of service, device interface,

protocol type

• Access pattern-based detection

Flow Analysis Algorithm

• Also uses a TCP work weight

w = (Ss + Fs + Rr)/Tsr

• Ss = SYNS + SYNACKS

• Fs = FINS

• Rs = RESETS

• Tsr= total number of packets

– Closer to 100% -> anomaly

Flow Reporting

• UI / Admin contact point

• Retrieves flow statistics

• Provides module activity overview

Experimental Design

• Sample 10% of all network data flow using IPFIX / NetFlow.

• Sort collected samples into logical groups based on parameters such

as data packet Size, Source, Destination, and Commands

• Data packet sample size was set at 10% of all traffic at the point of

collection

• Average data packet size ranged between 500 and 1000 bytes

• Infected (Botnet) packets have been used randomly starting with

Sample #500

Experimental Results

Conclusions

• Botnet Detection abstract module design

– Various programming languages

• The more it runs, the better it gets!

• Builds towards a comprehensive botnet detection model based

on network Flows

• Real-time reaction to threats

Thank you!

Questions, please?

	Slide 1
	About Me
	Outline
	What?
	The Cloud
	Test Bed Overview
	Slide 7
	Slide 8
	A Software Approach - AMDS
	A Software Approach - AMDS
	A Software Approach - AMDS
	Botnets
	NetFlow
	IPFIX
	Botnet Detection Module
	Slide 16
	Get Network Flow
	Store Flow / Analysis Result
	Flow Breakdown
	Flow Analysis
	Flow Analysis Algorithm
	Flow Analysis Algorithm
	Flow Reporting
	Experimental Design
	Slide 25
	Experimental Results
	Conclusions
	Slide 28

